Software-defined satellites, multi-orbit constellations and other new technologies in space are driving the digital transformation of satellite ground systems. To keep pace with these changes and provide enhanced performance, satellite ground networks must embrace a software-defined approach across the system, from the gateway to the remote satellite terminals, also known as the network edge.

Today’s analog remote satellite terminals are composed of dedicated hardware that can’t offer the performance and flexibility required to meet the demands of dynamic space.

OpenEdge, part of the OpenSpace Platform, takes software-enabled operations to the edge of the network to provide the increased processing power, faster response times, and improved customer experience that users demand. The goal? To help satellite operators make their services as mainstream as cellular communications and to capitalize on new services such as 5G.

More Power and Flexibility for Your Customers
OpenEdge is the first software-enabled satellite terminal that brings virtual signal processing and other applications closer to the end user for faster, more flexible and powerful service delivery at the network edge. OpenEdge utilizes digitization and virtualization to provide many advantages over analog remote satellite terminals, including:

- Support for Multiple Missions
- Standards-Based Operating Environment
- Reduced Hardware Footprint
- Orchestrated Operations

Deliver the Speed and Response Time Your Customers Want
OpenEdge’s open, standards-based operating environment provides the benefits of virtualization. For satellite networks, it means that if modems or other network functions that previously existed as dedicated hardware need to be installed, replaced or updated, it happens with a simple software update over the air. When networks can have hundreds of satellite terminals existing in remote places worldwide, zero-touch provisioning and maintenance reduce site visits for substantial cost savings.

Because services can be added, changed and updated in real time, revenue streams are accelerated and the end user experience is maximized.

Load Value-Added Software Applications
Since OpenEdge satellite terminals leverage general purpose compute, signal processing can happen alongside value-added third-party software applications that would have previously been additional hardware mounted alongside the modem in the terminal stack. Some examples of these applications include:

- Network acceleration for improved performance
- SD-WAN/SASE for the delivery of efficient, agile connections
- Firewalls for enhanced security
- Routers for orchestrated connection sharing
- And More . . .

Seamless Integration into Other Networks
OpenEdge utilizes Carrier Ethernet interoperability standards enabling, OpenEdge terminals to work side-by-side with standards compliant devices from other companies. Because of this, it is much easier for network operators to integrate spaced-based services into the global communications grid to capture new markets and revenue.

Choose the Configuration for Your Unique Business Needs
An OpenEdge terminal includes a digitizer, one or more virtual modems, general purpose compute and any fixed or mobile antenna. The hardware components
are assembled based on unique business and customer needs, which includes the placement of the integrated digitizer – either in the antenna or in the general-purpose compute. OpenEdge offers these different configurations to support smallSat, enterprise, and military applications.

The general purpose compute runs as Universal Customer Premise Equipment (uCPE) that is customizable based on performance, size, weight and power (SWaP) requirements. uCPEs provide open, disaggregated networking that does not require any specialized hardware such as Field Programmable Gate Arrays (FPGAs) or Graphics Processing Units (GPUs).

Technical Specifications

OpenEdge 2500 Integration-Ready Digitizer

OpenEdge 2500 is an integration-ready digitizer designed to enable digital antennas or OpenEdge software-enabled terminals on the OpenSpace Platform.

Digitizer Interfaces

<table>
<thead>
<tr>
<th>Tx Interface</th>
<th>Rx Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Connector: 2 x SMA, 50Ω</td>
<td>• Connector: 2 x SMA, 50Ω</td>
</tr>
<tr>
<td>• Frequency: 950 - 2450 MHz</td>
<td>• Frequency: 950 - 2450 MHz</td>
</tr>
<tr>
<td>• Output Range: -40 dBm to +5 dBm</td>
<td>• Input Range: -60 dBm to -10 dBm</td>
</tr>
<tr>
<td>• BUC Power Supply: +24V, 2A*</td>
<td>• BUC Power Supply: +24V, 2A*</td>
</tr>
<tr>
<td>• BUC Reference: 10 MHz or 50 MHz</td>
<td>• BUC Reference: 10 MHz or 50 MHz</td>
</tr>
</tbody>
</table>

Instantaneous Bandwidth

<table>
<thead>
<tr>
<th>Tx Interface</th>
<th>Rx Interface</th>
</tr>
</thead>
</table>
| • 2 Channels x 500MHz IBW Full-Duplex | Data and Management Interface
| • Data Ports: 2 x SFP+ |
| | - DIFI/IEEE-ISTO Std 4900-2021 or VITA 49 |
| | • Management Ports: 2 x 1Gige RJ-45 |

Timing and Frequency Interfaces

<table>
<thead>
<tr>
<th>Tx Interface</th>
<th>Rx Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1PPS and 10 MHz MMCX Interfaces</td>
<td>Data Ports: 2 x SFP+</td>
</tr>
<tr>
<td></td>
<td>- DIFI/IEEE-ISTO Std 4900-2021 or VITA 49</td>
</tr>
<tr>
<td></td>
<td>• Management Ports: 2 x 1Gige RJ-45</td>
</tr>
</tbody>
</table>

Mechanical and Environmental

- Dimensions: H 3.8 cm x W 7.6 cm x D 25.4 cm (H 0.8 in x W 3 in x D 9 in)
- Operating Temperature Range: -40°C to 60°C

Power Supply

- Input Voltage Range: 12-48VDC
- Power Consumption: <40 Watts

OpenEdge 2500 Remote

OpenEdge 2500 Remote is a uCPE with integrated digitizer built for OpenEdge satellite terminals on the OpenSpace Platform.

Compute Resources

- Processor: 20 Core/40 vCPU
 - Xeon-D 1700
- RAM: 128 GB of DDR4
- Storage: NVMe 256 GB SSD

Compute Interfaces

<table>
<thead>
<tr>
<th>Data Interfaces</th>
<th>Peripheral Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2 x 10 GbE RJ-45s</td>
<td>• 1 x VGA</td>
</tr>
<tr>
<td>• 2 x 1 GbE RJ-45s</td>
<td>• 2 x USBs</td>
</tr>
<tr>
<td>• 1 x IPMI RJ-45</td>
<td></td>
</tr>
</tbody>
</table>

Software and Operating System

- SLE Micro 5.2
- K3s Kubernetes
- OpenSpace vModem

Remote RF Interfaces

Tx Interface

- Connector: 2 x SMA, 50Ω
- Frequency: 950 - 2450 MHz
- Output Range: -40 dBm to +5 dBm
- BUC Power Supply: +24V, 2A*
- BUC Reference: 10 MHz or 50 MHz

Rx Interface

- Connector: 2 x SMA, 50Ω
- Frequency: 950 - 2450 MHz
- Input Range: -60 dBm to -10 dBm
- LNB Power Supply: 13 VDC or 18 VDC
- LNB configurable on/off 22KHz tone

Instantaneous Bandwidth

- 2 Channels x 500MHz IBW Full Duplex

Data and Management Interface

- Data Ports: 2 x SFP+
 - DIFI/IEEE-ISTO Std 4900-2021 or VITA 49
- Management Ports: 2 x 1Gige RJ-45

Timing and Frequency Interfaces

- 1PPS and 10 MHz MMCX

Mechanical and Environmental

- Dimensions: 19" rack-mount, 1U (1.75") x 15.7" depth
- Weight: ~18 lbs (8.16 kg)

This specification is subject to change.

OpenSpace is the industry’s first and only fully virtualized, software-defined and orchestrated satellite ground system platform. The OpenSpace platform includes OpenEdge solutions with OpenSpace vModems for signal processing across a range of applications at the remote satellite terminal. The OpenSpace Controller administers how service chains are deployed, and OpenSpace OpsCenter provides unified management across the entire satellite ground system.